ANG<mark>SEMI</mark>

Magnetic Sensor IC

Dual Outputs for both S and N-pole Low Power Hall-Effect Sensor IC

• General Description

Using low power CMOS process, the AS1829A is designed for low power, high performance unipolar detection dual output hall-effect application, such as cover switch, contactless switch, solid state switch and lid close sensor etc battery operation. The hall IC integrated an on-chip hall voltage generator for magnetic sensing, a comparator that amplifiers the hall voltage, a chopper amplifier, a Schmitt trigger to provide switching hysteresis for noise rejection, and two complementary output.

The total power consumption of AS1829A is typically less than 3.0uA at 3.6V power supply. AS1829A is designed to respond to alternating North and South poles. White the magnetic flux density (B) is larger than operate point (B_{OP}), the output will be turned on (low), the output is held until the magnetic flux density (B) is lower than release point (B_{RP}), then turn off (high).

The device is available in DFN1014-4L Package and is rated over the -40°C to 125°C. The all packages are RoHS and Green compliant.

Features

- Input Voltage Range :2.2V to 5.0V
- Micro-power consumption ideal for battery power applications
- Unipolar Operation, dual output
- Very high sensitivity hall sensor
- Low Power CMOS process technology
- Chopper stabilization amplifier stageMagnetic Sensitivity (typical)
- B_{OPS}=33Gauss, B_{RPS}=20Gauss B_{OPN}= -33Gauss, B_{RPN}= -20Gauss
- Good RF noise immunity
- No need pull-up resistor
- Small Solution Size
- RoHS & Green Compliant
- DFN1014-4L Packages
- -40°C to +125 °C Temperature Range

Applications

- Cover switch in clam-shell cellular phones
- Cover switch in Notebook, PC/PAD
- Contact-less switch in consumer products
- Solid State Switch
- Handheld Wireless Handset Awake Switch
- Lid close sensor for battery-powered devise
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- DV, DSC, and White Goods

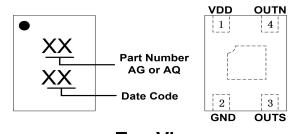
Ordering Information

AS1829AXXX _____⊺ ⊺ └____

Package: D:DFN1014-4L Temperature Grade: N: -40°C~85°C Y: -40°C~125°C

Part Number	B _{OP} (Gauss)	B _{RP} Gauss)	Package Type	Package Qty	Temperature	Eco Plan
AS1829ADRN	±33Gauss	±20Gauss	DFN1014-4L	7-in reel 3000pcs/reel	-40∼85 ℃	Green
AS1829ADRY	±33Gauss	±20Gauss	DFN1014-4L	7-in reel 3000pcs/reel	-40∼125° ℃	Green

Packing:


R:Tape&Reel

Marking & Pin Assignment

DFN1014-4L

Pin Name	Pin No.	I/O	Pin Function	
FIII Naille	DFN1014-4L			
VDD	1	Р	Input Power Supply.	
GND	2	Р	Ground.	
OUTS	3	0	Output Pin for South Pole.	
OUTN	4	0	Output Pin for North Pole.	

Typical Application Circuit

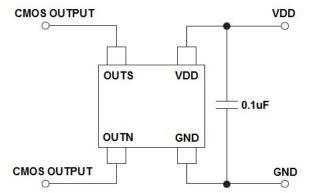
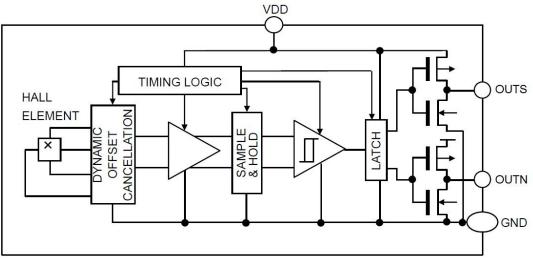
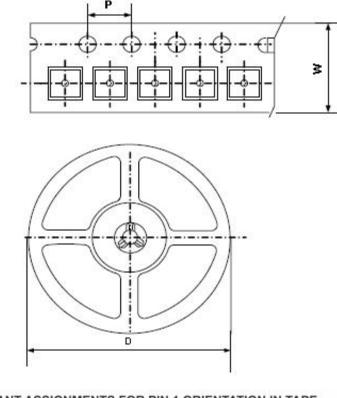
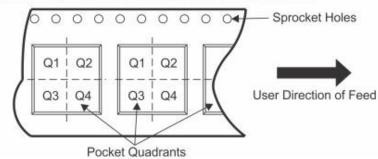



Figure 1, Typical Application Circuit of AS1829A


Block Diagram



Tape and Reel Information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	SPQ	Carrier Width (W)	Pitch(P)	Reel Size(D)	Pin1 Quadrant
AS1829ADRN	DFN1014-4L	3000pcs	8.0±0.1 mm	4.0±0.1 mm	180±1 mm	Q2
AS1829ADRY	DFN1014-4L	3000pcs	8.0±0.1 mm	4.0±0.1 mm	180±1 mm	Q2

*All dimensions are nominal